
VOL. 52, 1964 MATHEMATICS: R. E. MILES 901

l/p, and under the conditions of Theorem 3 the first member of (4) is also i/p.
Theorem 2 and later results including the corollaries have application to the dual

problem, approximation by functions of type RAn(z) considered in reference 3.
The methods of the present note for the study of convergence and degree of con-

vergence on subsets of Ep apply when the number of free poles of the approximating
rational functions is finite, and by dualization apply when the number of their free
zeros is finite; they do not apply when the number of both free poles and zeros is
infinite.

$ This research was sponsored (in part) by the U.S. Air Force Office of Scientific Research.
1 Walsh, J. L., Math. Ann., 155, 252-264 (1964).
2 Walsh, J. L., "The convergence of sequences of rational functions of best approximation, II,"

in preparation.
3 Walsh, J. L., these PROCEEDINGS, 50, 791-794 (1963).
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Introduction.-Consider a system of straight lines in different directions, dis-
tributed at random homogeneously throughout a plane (see Fig. 1). This paper
presents the main results of a study concerned primarily with the statistical proper-
ties of the aggregates of polygons into which such systems divide the plane. This
problem was first considered by Goudsmit,2 who was able to derive a number of
properties. The present study utilizes more powerful and more general methods,
and consequently yields many additional results. In order to give a brief and sim-
plified description of the theory comprehensible to nonspecialists interested in appli-
cations, a number of mathematical points must needs be glossed over or even ignored;
the following treatment should therefore only be regarded as heuristic. Parentheses
will often signify heuristic ideas. Only a knowledge of elementary probability
theory is presupposed. The precise specifications of the system are followed by
the sequence of main results. The second and concluding part of this paper, which
will appear in the November issue of these PROCEEDINGS, contains a short account
of methods and of an application.

The Line System £.-By way of notation, the equation of any line in the (xy)
plane may be written as

p=xcosO+ysinO (-a <p<CO,0 0<r),

where p is the signed (i.e., positive or negative) length of the perpendicular, or its
distance, from the origin 0 and 0 is its orientation-the angle this perpendicular
makes with Ox. There is thus a one-to-one correspondence between lines in the
(xy) plane and points in the strip 0 $ 0 < r of the (p,0) plane.
The distances ... A P-2 < P-1 < PO < Pi < P2 < . . . of the lines from 0 constitute

the coordinates of the events of a Poisson (or purely random) process on a one-dimen-



902 MATHEMATICS: R. E. MILES PROC. N. A. S.

sional axis, of constant density T. (Thus, the number
of events in any interval of length L has a Poisson dis-
tribution with mean rL, the mean interevent interval
length being r-1. For definiteness po may be taken,
for example, as the pj with least modulus.) The
corresponding orientations Oi are mutually independent,
having a common uniform probability distribution in the

FIG. 1.-Random lines. A real- interval 0 < 0 < or. The sequence { (Piy O) } (i = 0,
ization of £ within a rectangle. i =1 =42,...) represents a system of random lines,

denoted by 2, in the plane. Equivalently, the (pi,6j)
are the points of a two-dimensional Poisson process of density r/lr in the strip 0 ( 0
< 7r of the (p,0) plane.
One possible realization of £ is that in which there are no lines at all! The

probability of this is, of course, zero. It is on account of such "irregular" realiza-
tions, of total probability zero, that many of the following assertions must be
qualified by "with probability 1" (often omitted, however, for brevity). Note
that the points at which the perpendiculars from 0 meet the lines of £ are not
uniformly distributed in the plane, but constitute a Poisson point process of density
'rbrR, where R measures radial distance from 0. With probability 1, no pair of
lines of 2 has the same orientation, ensuring that every pair intersects in a unique
point. Furthermore, with probability 1, no triple of lines of 2 intersects in a com-
mon point. The aggregate of points, or vertices, of intersection of pairs of lines of 2
is denoted by V. One of the principal reasons for employing this particular random
construction is the basic property
THEOREM 1. 2 is homogeneous.
That is, from a probability point of view, the lines of £ have a uniform density,

of which r is a measure, throughout the plane. The actual position of the origin
in the plane is of no significance, and it is immaterial from which origin £ is ran-
domly generated. Theorem 1 is the foundation of a fruitful body of theory: with-
out homogeneity, ergodic theory would be inapplicable and consequently most of
what follows would be meaningless. A considerable additional advantage of the
construction is that many of the "independence properties" of the linear Poisson
process carry over to £. On account of the common uniform orientation distribu-
tion, 2 is, again in a probability sense, isotropic. On the average, there is a length T
of lines of S, and T2/lr vertices of AU, per unit area; the corresponding mean values
of these quantities contained in an arbitrary set of area A are given on multiplying
by A. An alternative random construction of 2 is furnished by
THEOREM 2. The points of intersection of an arbitrary line 1 with £ constitute a

Poisson process of density 2T/7r, the associated angles of intersection being mutually
independent with common probability density 1/2 sin 0 (0 s 0 < 7r).
Note that the angle distribution is not uniform as one might at first suppose, but

it is symmetrical about 0 = 7r/2. Note also that this theorem holds for the inter-
section of a line of £ with the remaining lines of £. There is some overlap between
Theorem 2 and
THEOREM 3. The number M of lines of £ intersecting an arbitrary convex figure in

the plane, of perimeter S, has a Poisson distribution with mean value rS/l7r. Further-
more, given that M = m, the m lines are independently and identically distributed.
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Such an individual intersecting line is called a random secant of the figure, for a
precise specification of which, and an account of the beautiful theory which ensues,
the reader is referred to Deltheil.I An example of a convex figure is a line segment
of length L, which has (sic) perimeter 2L. It is in Theorem 3, an excellent charac-
terization of £ as well as a useful tool, that the deep underlying connection with
integral geometry is perhaps most evident. For instance, the "invariant measure"
of the set of straight lines intersecting a convex figure is (up to a constant factor) S.

The Polygon Aggregate 6P.-The present investigations have been primarily con-
cerned with the probability distributions of the aggregate (P ofrandom convex polygons
into which the plane is partitioned by the lines of £, in the sense in which each
polygon of (P is given "equal weight." More specifically, with the class of distribu-
tions of certain "descriptions" of a convex polygon, the basic ones are N, the number
of sides (or vertices); S, the perimeter, = 7r times its mean orthogonal projection
onto a random uniformly oriented line; A, the area; and D, the in-circle diameter
(the in-circle, the largest circle contained in a convex polygon, is in general tan-
gential to three of its sides). It is a matter of ergodic theory to demonstrate' the
existence of these distributions, which are not to be confused with the corresponding
class of well-defined distributions relating to the unique polygon PO containing the
origin 0. For, on account of homogeneity, 0 is like a "random point in the plane,"
and so the larger the area of a polygon of (P, the more likely it is to contain 0.
(Suffice it to say,3 corresponding pairs of joint probability density functions, in
which one of the descriptions is A, differ essentially by a factor A, vide the sketch
derivation of the second-order moments below.) Denoting "mean value" and
"probability" by E and P, respectively, the principal results relating to (P are:
THEOREM 4. The distribution ofD is negative exponential, with E[D] = T-.
Theorem 4 generalizes to two dimensions the negative exponential distribution

of the interval lengths in a linear Poisson process. The behavior of this distribution
for small values yields information about how close triples of lines of £ come to
intersecting in a common point; incidentally, this consideration verifies that, with
probability 1, there are no such points. It is also the distribution of the diameter
of the largest circle, center 0, contained in Po: but this circle is, with probability 1,
smaller than the in-circle of Po! This apparent paradox is dispelled by a previous
remark.
THEOREM 5. The distribution of 2rS/7r for the class of k-sided polygons of (P is

X2 on 2(k-2) degrees offreedom (k = 3,4,5,. . . ).
Thus, in particular, the perimeter distribution for the triangular polygons is

negative exponential, with mean value 7r/r. A corollary is that the mean length of
a side for the class of k-sided polygons is (k-2) r/kr, which T 7r/r as k -a c. In-
formation about the distributions of N, S, and A for small values is given by
THEOREM 6. P[N = 3] = P[a "random" polygon of (M is a triangle] =

2 - 7r2/6 = 0.3551. For S << r-1 and A << T-2, the probability densities of S and
A are (12 - 7r2)'T/67r + 0(r2S) and crA1-'/ + 0(r2), respectively, where

1 re rT-+
C=J= J [2sinOsin #sin (O + 4')]l/2 d1 dob.
Now follow the principal mean values:

E[N] = 4 E[S] = 27r/r E[A] = 7r/T2 (1)
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E[N2] = (7.2 + 24)/2
E[SN] = 7r(7r2 + 8)/2T E[S2] = 7r2(7r2 + 4)/2,r 2 (2)
E[AN] = ir3/2r2 E[AS] = wr4/2Tr E[A2] = 4//2T,4
The values of E[N], E[A], and E[A2] are essentially those given by Goudsmit,2
who normalized by taking E[A] = 1. (1) and (2) together yield the interesting
variance-covariance matrix

N S A
N E(2 - 8)/2 r(72 -8)/27 gr(r2 -8)/2T21
S -7r(7r2 - 8)/2r 7r2(72 - 4)/2T,2 7I2(2 -4)/2T3 (3)
A -7r(,ir2 - 8)/2i2 7r2(7r2 - 4)/2Tr3 T2(72 - 2)/2T4J

of N, S, and A.

E[NA2] = 7r4(87r2 - 21)/21r4 E[SA2] = 8wr7/21r5 E[A3] = 4,r7/7r6. (4)

E[SAm-1] = 2rE[Am]/m (m = 1,2,.. .). (5)

D. G. Kendall obtained -the value of E[A3], while P. I. Richards obtained (5), both
in unpublished papers. Combining these two results (with m = 3) yields E[SA2],
which the author utilized to find E[NA2]. The reader may find it rewarding to
"check" the values of P [N = 3], E [N], and E [N2] by covering a sheet of paper with
20 or so "random" straight lines, and computing the obvious estimates.

Just as for (P, ergodic theory establishes probability distributions for VU and the
aggregates , and gk defined below. For the sake of completeness, the next theorem
gives together all the main orientation distributions.
THEOREM 7. (i) The orientation a of a "random" line of £ has probability density

1/7r (0 < a < 7r). (ii) The orientations a, /3 of the two lines of £ through a "random"
vertex of Vu have joint probability density sin (,8- a) /27r (0 $ca < wr, 0 % B < 7r).
(iii) (a) The orientations a, /3, y (0 ( a < ir, 0 % /3 < 7r, 0 $ y < 7r) of the three lines
of s tangential to the in-circle of a "random" polygon of a, have joint probability density

2 cos A

%AJOcos cAos i32,2 2 2/

where a*, /3*, and yy* are the interior angles of the triangle so formed. (b) The corre-
sponding density for the lines forming the sides of a "random" triangle of (P is

*~~~~Y4sin - sin - sin /-r(12 - 2).2 2 2

It is left as an exercise for the reader to express a*, /*, and y* in terms of a, /3, and
-y. Observe in (ii) that, although individually both a and / have uniform distribu-
tions, they are not independent. The same remark applies to both parts of (iii).
From (ii) may be derived the distribution of the intersection angle at a "random"
vertex, which as might be expected is the distribution appearing in Theorem 2;
it is also a simple matter to derive in the two cases of (iii) the joint and individual
distributions of a* and 3*(1y* = 7 - a* - /*). Theorems 4 and 7(iii)(a) com-
bined are the basis of a random construction of a "random" polygon of (P, from
which it may be concluded that those polygons with small D, S, or A tend to be
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triangles, whereas those with large D, S, or A tend to have many sides, and so be
"rounded" in appearance.

Consider now the class of line segments joining pairs of vertices of V. Such a
segment is a member of the aggregate 9k if it is part of a line of £ and contains
exactly k other vertices of V(k = 0,1,. . .); and a member of the aggregate Ah if it is
not part of a line of £ and its interior is crossed by exactly k lines of £(k = 0,1,. . . ).
For example, go and go are, respectively, the aggregates of sides and diagonals of
the polygons of (P. Let L denote segment length.
THEOREM 8. The distribution of 4rL/Ir for the segments of (i) gk is X2 on 2(k + 1)

degrees offreedom; (ii) Sk is X2 on 2(k + 2) degrees offreedom.
Part (i) is fairly immediate (cf. Theorem 2), unlike (ii).

Thick Lines.-Suppose each line is given width w (with a width w/2 on either
side).
THEOREM 9. The new polygon aggregate comprising the interstices between these

thick lines has precisely the same probability distributions as 6P, so that, for example,
Theorems 4, 5, 6, 7(iii), and (1)-(5) carry over unchanged. Moreover, this property
continues to hold in the progressively more general situations: (i) the widths of the
lines are random, being mutually independent with a common probability distribution;
and (ii) as in (i), but the distribution of the line's width depends on the line's orientation,
e.g., the case where the "North-South" and "East-West" lines tend to be thick and thin,
respectively.

This theorem is plausible, since by giving the lines width the larger polygons are
reduced in size, the smaller ones disappear, the general effect in a given large area
being a loss only of the number of polygons, not of size generally. If w(O) is the

mean thickness of lines with orientation 0, then fw = f vZ(O) dO/1r is the over-all

mean line thickness. Theorem 3 remains true if r(w + S/ar) is substituted for
rS/lr. Remembering that homogeneity is preserved, the "fraction of the plane"
not covered by any thick line = P [O is not covered] which, putting S = 0 into the
generalization of Theorem 3, = emu

The Anisotropic Case.-If the condition of isotropy is dropped, the common
orientation distribution being altered from a uniform to a quite general one, with
distribution function H(G) (O < 0 < 7r), say, then the above theory continues to
hold in varying degrees. If H(0) has any finite jumps 6f, corresponding to orienta-
tions @(i) having positive probability, then a "proportion" 5j of the lines of £ will
have orientation @(j, and it is no longer true that every pair of lines intersects in a
unique point. In view of this, the in-circle is no longer necessarily unique, although
the value of D is. In order to generalize Theorem 7(iii)(a) it is sufficient in the
ambiguous cases to define the in-circle to be a random one (probability '/2) of the
two extreme largest inscribed circles. However, for all choices of H(0), still no
triple of lines of £ intersects in a common point (with probability 1). Homogeneity
is preserved (Theorem 1). Define

t(+)=f sin (fr-4)I dH(iP),

v jw G(+) dH(4)
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and = f [t()]-2 d+.

The average length of line and number of vertices per unit area are, respectively,
r(as before) and Tr2/2. r is maximal for H(0) = 0/r, so, for a fixed line density,
the maximum vertex density occurs in the isotropic case. If in Theorem 2 the
orientation of 1 is 4, then 1 intersects £ in a Poisson process of density 4(k), the
distribution function of the associated intersection angle being

r0++
I sin (4-4) dH(0)/1(s) (O % 0 < ir),

where 0 increases in an anticlockwise sense and in the integral H(r + 0) = 1 + H(0).
Theorems 3 and 5 carry over if S is replaced by S* = wf W(0)dH(0), where the

"width" W(0) is the length of the orthogonal projection of the figure (Theorem 3) or
polygon (Theorem 5) onto a line orthogonal to lines with orientation 0. Observe
that S* for a polygon, unlike N, S, and A, depends on more than simply its size and
shape. In general, the new probability distributions depend on H(0), but Theorem 4
generalizes as it stands. The (known) important first and second-order moments are:

E[N] = 4 E[S] = 4/cT E[S*] = 2w/r E[A] = 2/7r2 (6)

E[N2] = rn+ 12
E[SN] = 2(rn + 4)/T (7)
E[S*NI = 7r(¢r- + 4)/r
E[AN] = 2fl/r2, E[AS] = 4n/¢rS, E[AS*] = 27rfl/T3, E[A2] =4n/r4

In the isotropic case r = 2/r, q = 70/4, and the values in (1) and (2) may be re-
covered. The orientation distributions generalizing those of Theorem 7 are simply
obtained by "weighting" with respect to H(0), e.g., assuming the density h(0) =
H'(0) exists, the density of (iii) (a) becomes

cos 2 cos 2 cos - h(a) h(J3) h(y)2 2 2

JJt cos-j2 cosCcos
a*

h(a) h(Q) h(7y)da d[3d

As regards Theorem 8, the revised form of Theorem 2 essentially contains the gen-
eralization of (i), but it is difficult to frame a satisfactory generalization of (ii).
It may be remarked that Goudsmit's simplified problem2 is a special case of aniso-
tropy, in which the orientation has only two possible values, which are orthogonal
and equally likely.
For anisotropic thick lines, the over-all mean thickness w = fr (0) dH(0).

Theorem 9 generalizes as it stands. Theorem 3 remains true if rS/7r is replaced by
r(fD + S*/7r), and the "uncovered fraction of the plane" is again e-rU.

* Much of the author's contribution to this topic was made in 1960-1961, while supported by a
research studentship of the Department of Scientific and Industrial Research (United Kingdom).

1 Deltheil, R., Probabilits Glomdriques (Paris, 1926), especially pp. 68-86.
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2 Goudsmit, S. A., "Random distribution of lines in a plane," Rev. Mod. Phys., 17, 321-322
(1945); reviewed in Kendall, M. G., and P. A. P. Moran, Geometrical Probability (New York:
Hafner, 1963), chap. 3.

3Miles, R. E., Ph.D. thesis, Cambridge, 1961.
4 Santal6, L. A., Introduction to Integral Geometry (Paris, 1953), especially pp. 10-16.
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We have previously introduced,' and then meaningfully applied,2 a class of
functions which are more general than almost periodic ones. We named them
almost automorphic functions because they originally presented themselves, in
our work in differential geometry, as scalars and tensors on manifolds with (discrete)
groups of automorphisms.
The first examples of functions which are almost automorphic, but, demonstrably,

not almost periodic, were then constructed by Veech,3 and he introduced them not
on the continuous additive group R = {- c < t < co }, but on its discrete sub-
group Z = {- o < n < o } which seems to be a natural habitat for such "counter-
examples." Recently, H. Furstenberg communicated to us another such example,
again on Z, and it is as follows.
THEOREM 1. If 0 is any nonrational real number, then the double sequence

,p(n) = signum (cos 2rno), - c < n < o (1)

is almost automorphic, but not almost periodic, on Z.
Now, in the present paper we will give our own proof of this theorem, and we

will deduce it from general statements about almost automorphic and almost
periodic functions which, although very simple, have some interest as such.

In the general statements it will be appropriate to consider functions from and
to general spaces. We start out with a general pointset X = {x} and a general
group r = { a4 acting on it; and we denote by x' = -yx the image of the point x
under the action of the group element y, each of which represents a transformation
of X into itself.

Definition 1: A function

y = f(x) (2)
from X to a metric space Y is almost periodic (relative to r) if any (infinite)
sequence

{Ym'} (3)

in r-repetitions allowed-contains an (infinite) subsequence

gvYn} (4)


